首页> 外文OA文献 >Deep Learning for Detecting Multiple Space-Time Action Tubes in Videos
【2h】

Deep Learning for Detecting Multiple Space-Time Action Tubes in Videos

机译:用于检测视频中多个时空动作管的深度学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this work, we propose an approach to the spatiotemporal localisation(detection) and classification of multiple concurrent actions within temporallyuntrimmed videos. Our framework is composed of three stages. In stage 1,appearance and motion detection networks are employed to localise and scoreactions from colour images and optical flow. In stage 2, the appearance networkdetections are boosted by combining them with the motion detection scores, inproportion to their respective spatial overlap. In stage 3, sequences ofdetection boxes most likely to be associated with a single action instance,called action tubes, are constructed by solving two energy maximisationproblems via dynamic programming. While in the first pass, action pathsspanning the whole video are built by linking detection boxes over time usingtheir class-specific scores and their spatial overlap, in the second pass,temporal trimming is performed by ensuring label consistency for allconstituting detection boxes. We demonstrate the performance of our algorithmon the challenging UCF101, J-HMDB-21 and LIRIS-HARL datasets, achieving newstate-of-the-art results across the board and significantly increasingdetection speed at test time. We achieve a huge leap forward in actiondetection performance and report a 20% and 11% gain in mAP (mean averageprecision) on UCF-101 and J-HMDB-21 datasets respectively when compared to thestate-of-the-art.
机译:在这项工作中,我们提出了一种方法来对时空定位的视频中的多个并发动作进行时空定位(检测)和分类。我们的框架包括三个阶段。在阶段1中,使用外观和运动检测网络对彩色图像和光流进行定位和刻划。在阶段2中,通过将外观网络检测与运动检测得分结合起来,使其与各自的空间重叠不成比例,来增强外观网络检测。在阶段3中,通过动态编程解决两个能量最大化问题,构造最可能与单个动作实例(称为动作管)相关联的检测框序列。在第一遍中,通过使用特定于类的得分及其空间重叠将检测盒随时间链接起来,从而构建跨越整个视频的动作路径,在第二遍中,通过确保所有组成的检测盒的标签一致性来进行时间修剪。我们证明了我们的算法在具有挑战性的UCF101,J-HMDB-21和LIRIS-HARL数据集上的性能,全面实现了最新的结果,并在测试时显着提高了检测速度。与最新技术相比,我们在动作检测性能上实现了巨大的飞跃,并报告了UCF-101和J-HMDB-21数据集的mAP(平均平均精度)分别提高了20%和11%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号